A Simple Proof of Mirzakhani’s Recursion Formula of Weil-petersson Volumes

نویسندگان

  • KEFENG LIU
  • HAO XU
چکیده

In this paper, we give a simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes of moduli spaces of curves using the Witten-Kontsevich theorem. We also briefly describe a very general recursive phenomenon in the intersection theory of moduli spaces of curves. In particular, we present several new recursion formulas for higher degree κ classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models

We prove that Mirzakhani’s recursions for the volumes of moduli space of Riemann surfaces are a special case of random matrix recursion relations, and therefore we confirm again that Kontsevich’s integral is a generating function for those volumes. As an application, we propose a formula for the Weil-Petersson volume Vol(Mg,0).

متن کامل

Recursion Formulae of Higher Weil-petersson Volumes

Abstract. In this paper we study effective recursion formulae for computing intersection numbers of mixed ψ and κ classes on moduli spaces of curves. By using the celebrated WittenKontsevich theorem, we generalize Mulase-Safnuk form of Mirzakhani’s recursion and prove a recursion formula of higher Weil-Petersson volumes. We also present recursion formulae to compute intersection pairings in the...

متن کامل

Recursion between Mumford volumes of moduli spaces

Abstract We propose a new proof, as well as a generalization of Mirzakhani’s recursion for volumes of moduli spaces. We interpret those recursion relations in terms of expectation values in Kontsevich’s integral, i.e. we relate them to a Ribbon graph decomposition of Riemann surfaces. We find a generalization of Mirzakhani’s recursions to measures containing all higher Mumford’s κ classes, and ...

متن کامل

Recursions and Asymptotics of Intersection Numbers

We establish the asymptotic expansion of certain integrals of ψ classes on moduli spaces of curves Mg,n when either the g or n goes to infinity. Our main tools are cut-join type recursion formulae from the WittenKontsevich theorem as well as asymptotics of solutions to the first Painlevé equation. We also raise a conjecture on large genus asymptotics for n-point functions of ψ classes and parti...

متن کامل

Mirzakharni’s Recursion Formula Is Equivalent to the Witten-kontsevich Theorem

In this paper, we give a proof of Mirzakhani's recursion formula of Weil-Petersson volumes of moduli spaces of curves using the Witten-Kontsevich theorem. We also describe properties of intersections numbers involving higher degree κ classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009